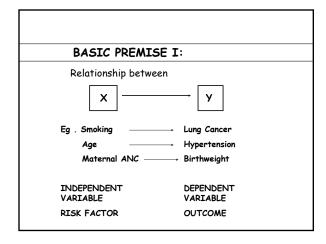
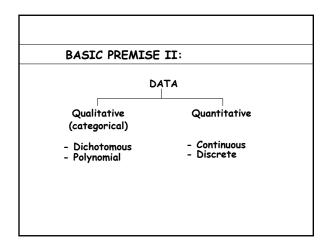
Dr. Azmi Mohd Tamil Jabatan Kesihatan Masyarakat Fakulti Perubatan UKM Based on lecture notes by Dr Azidah Hashim

WHY MULTIVARIATE ANALYSIS?


- Used for analysing complicated data sets
- When there are many Independent Variables (IVs) and/or many Dependent Variables (DVs)
- When IVs and DVs are correlated with one another to varying degrees
- When need to come up with Prediction Model
- Parallels greater complexity of contemporary research

USING MULTIVARIATE ANALYSIS


- · WHICH STATISTICAL PROCEDURE TO USE?
- · HOW TO PERFORM CHOSEN PROCEDURE?
- · HOW TO INFER FROM RESULTS OBTAINED?
- · ANY OTHER ALTERNATIVE APPROACH?

CHOICE OF APPROPRIATE STATISTICAL METHOD BASED ON:

- Nature of IVs and DVs
- Investigator's Experience
- Personal Preferences
- Ease of Comfort with Methods Used
- Literature Review References
- Consultation with Statistician

BASIC PREMISE I:		
TERM USED:-		
x	У	
Independent Variable (IV)	Dependent Variable (DV)	
Predictor	Outcome	
Explanatory	Response	
Risk Factor	Effect	
Covariates (Continuous)		
Factor (Categorical)		
Control		
Confounders		
Nuisance		

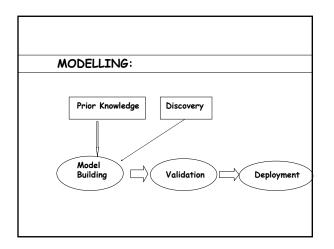
TERMINOLOGY:

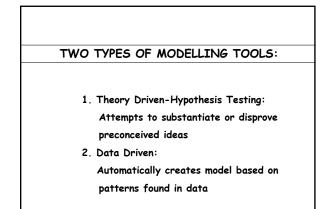
Univariate AnalysisAnalysis in which there is a single DV

, Bivariate Analysis

- Analysis of two variables
- $\boldsymbol{\cdot}$ Wish to simply study the relationship between the variables

Multivariate Analysis


• Simultaneously analyse multiple DVs and IVs


BASIC PREMISE 111:VARIATIONS OF THE SAME THEME
THE GENERAL LINEAR MODEL:
$y = a + b_1 x_1 + b_2 x_2 + b_3 x_3 \dots + b_i x_i$
Used in the following procedures:
ANOVA
ANCOVA
Multiple Linear Regression
Multiple Logistic Regression
Log Linear Regression
Discriminant Function

Methods (1)		
Name	Xs	У
Regression and	Continuous	Continuous
Correlation	(eg. age)	(eg. BP)
Analysis of Variance	Categorical	Continuous
(ANOVA)	(eg. SES)	(eg. BP)
Analysis of	Categorical	Continuous
Covariance	and Continuous	(eg BP)
(ANCOVA)	(eg age and SES)	

Rough Guide to Multivariate Methods (2)			
Name	Xs	У	
Multiple Linear	Continuous	Continuous	
Regression	(eg. Age, Ht, Wt)	(eg. BP)	
Logistic Regression	Continuous	Categorical	
5 5	(eg. age)	(eg. CHD)	
Logistic Regression	Categorical	Categorical	
	(eg. sex)	(eg. CHD)	
Discriminant	Continuous	Nominal /	
Function Analysis	(eg. Age,	Ordinal	
	Income)	(eg. Quality of	

BASIC PRE	MISE IV:
TWO APPRO	DACHES TO CHOOSING:
1. <u>Based on ⁻</u>	Type of Modelling
2. Based on	Type of Research Question

THEORY-DRIVEN MODELLING TOOLS: CORRELATIONS t-TESTS ANOVA LINEAR REGRESSION LOGISTIC REGRESSION DISCRIMINANT ANALYSIS FORECASTING METHODS

DATA-DRIVEN MODELLING TOOLS: CLUSTER ANALYSIS FACTOR ANALYSIS DECISION TREES DATA VISUALISATION NEURAL NETWORKS

 \triangleleft

BASIC PREMISE IV:

Types of Research Questions

- Degree of Relationship among Variables
- Significance of Group Differences
- Prediction of Group Membership
- Structure

RESEARCH QUESTION I: Degree of Relationship among Variables Statistical technique: a. Bivariate r (Bivariate correlation and Regression) b. Multiple R (Multiple Correlation and Multiple Regression) c. Sequential R d. Canonical R

e. Multiway Frequency Analysis

RESEARCH QUESTION II:

Significance of Group Differences

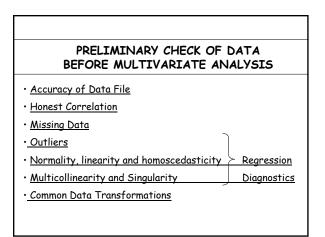
Statistical Techniques:

- a. t-test
- b. One-way ANOVA
- c. Two-way ANOVA d. Profile Analysis
- a. Profile Analysis

RESEARCH QUESTION III

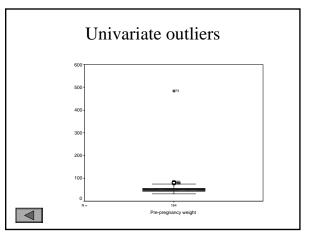
Prediction of Group Membership

Statistical technique


- a. Discriminant Function
- b. Multiway Frequency Analysis (Logit)
- c. Logistic Regression

RESEARCH QUESTION IV

Structure

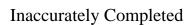

Statistical technique:

- a. Principal Component Analysis
- b. Factor Analysis
- c. Structural Equation Modelling

ACCURACY OF DATA FILE :

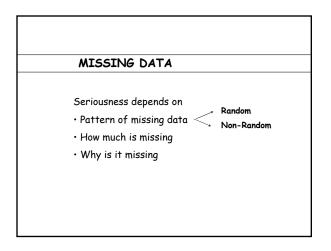
- Inspect univariate descriptive statistics for accuracy of input
- a. Out-of-range values
- b. Plausible means and standard deviation
- c. Coefficient of variation
- d. Univariate outliers

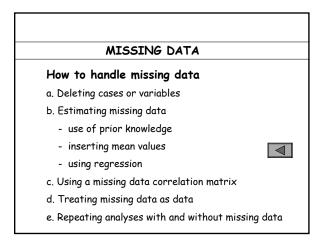
HONEST CORRELATIONS


- Inflated Correlation
- Deflated Correlation
- Inaccurately Completed

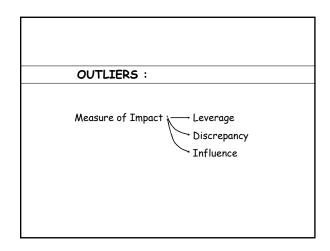
Inflated Correlation

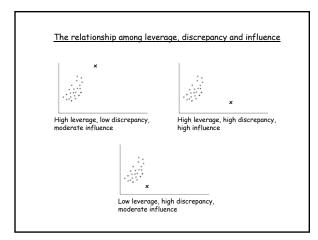
- If composite variables are to be used and two or more composite variables have the same raw data, <u>correlation</u> can be inflated.
- i.e. correlation between BMI and weight

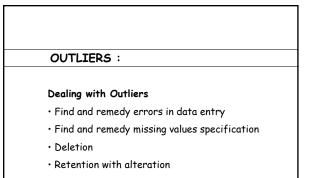

Deflated Correlation

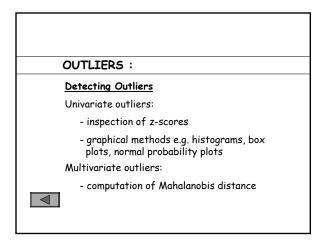

- the <u>range</u> of values for one variable is restricted; "relationship between annual average daily traffic count (AADT) and accidents on rural highways and picks a remote region where all AADT's are less than 3000, then if there is a good correlation, he is likely to underestimate it with such a restricted <u>range</u> on one variable.
- if an intervening variable mediates between two variables;
 "relationship between thickness of asphalt and chloride content, then picking only those bridges in the population which have a waterproofing membrane will likely push down the estimate. The waterproofing membrane intervenes, literally and statistically."

• Questionnaires inaccurately completed due to lack of time, lack of concern, emotional bias will affect correlation.

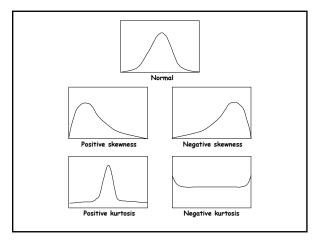

 \triangleleft

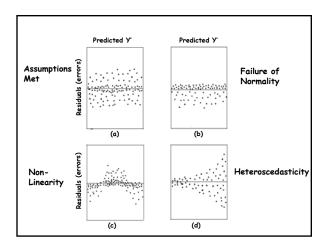


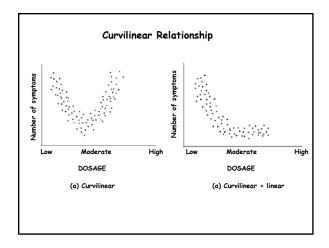


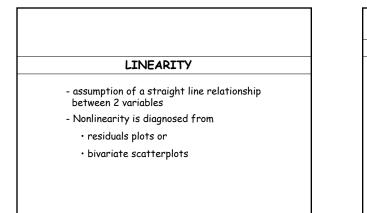

OUTLIERS

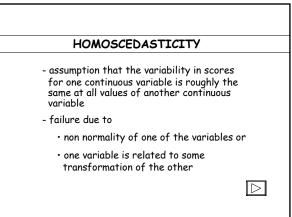
- Cases with such extreme values on one variable or a combination of variables that they distort statistics
- Presence due to
- incorrect data entry
- failure to specify missing value codes
- outlier is not a member of target population
- distribution for variable in population is more skewed than normal

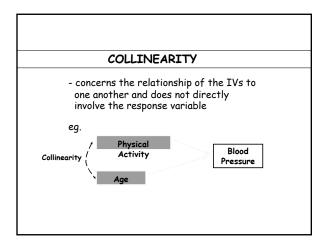


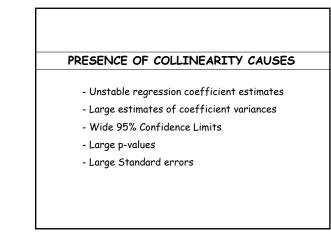

Need for Multivariate Normality

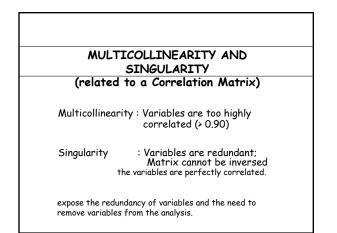

- assumption that each variable and all linear combinations of the variables are normally distributed
- robustness to violation of assumption still inconclusive

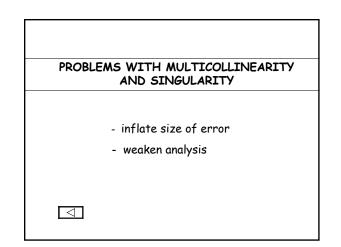

NORMALITY

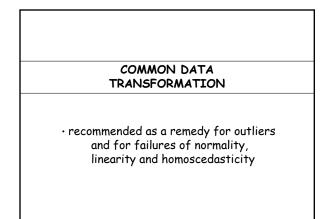

- assessed via statistical or graphical methods
- 2 components: skewness and kurtosis
- if non-normal, consider transformation

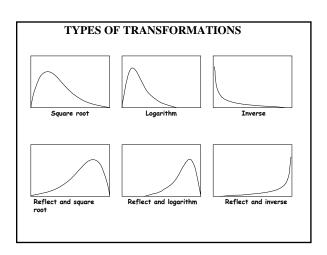


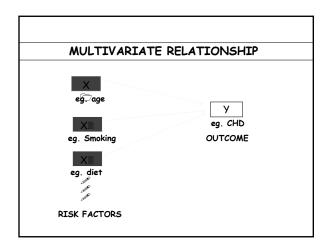


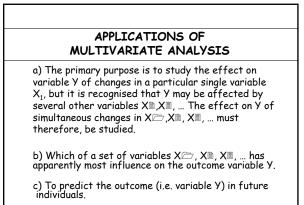


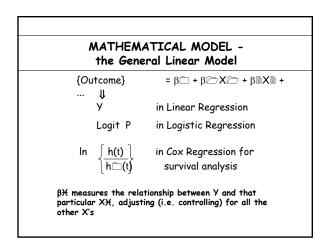


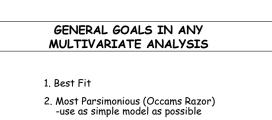


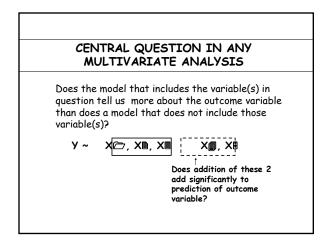


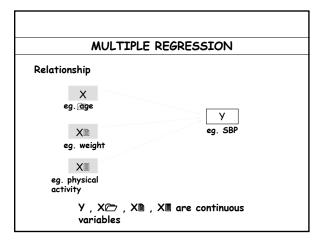


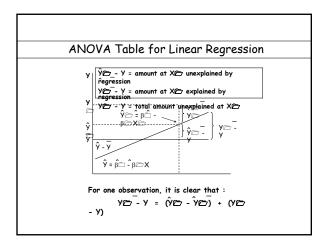


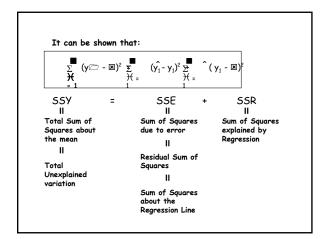


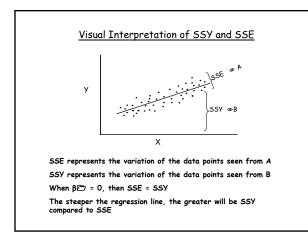


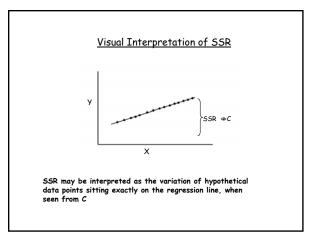


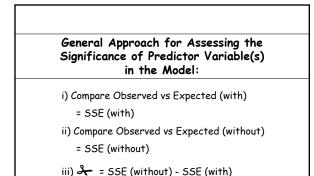


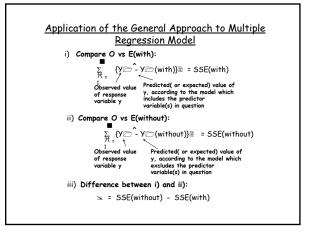


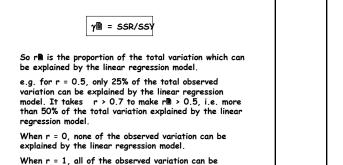


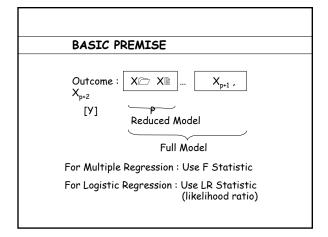

3. Biologically reasonable





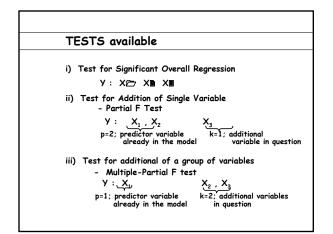


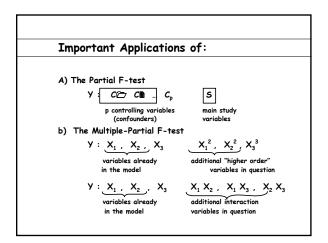


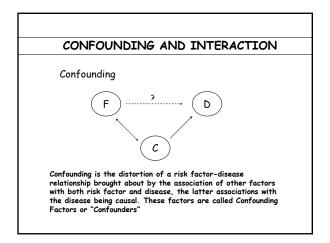


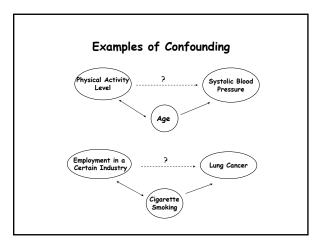
explained by the linear regression model.

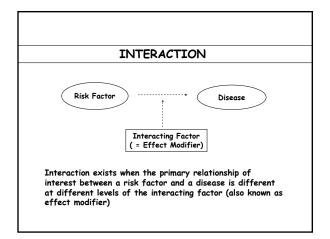
Source	Sum of Squares (SS)	Degrees of Freedom	Mean square (MS)	Variance Ratio
Regression	SSR	1	MSR = (SSR/1)	F = MSR/MSE
Residual	SSE	n - 2	MSE = (SSE/n-2)	
Total	SSY	n - 1		
	ć	Ĵ∎ = MSE		
	Ŷ	🗎 = SSR/S	559	

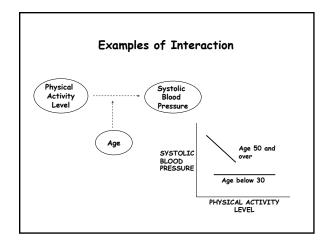

Assumptions:

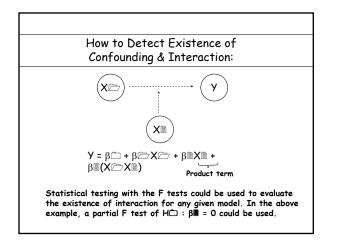

i) Ε (Υ| x, , x, , ... x, , ... x, , μγ| x, , ... x, , ... x, , ... x, ... x,

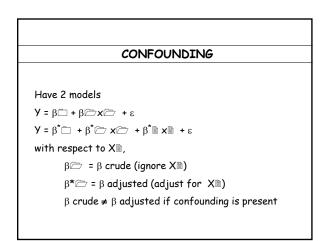

= $\beta \square + \beta \boxdot x \boxdot + ... + \beta \& x \&$ {Assumption of Linearity}


ii) VAR $(Y|x^{cr}, x^{B}, ..., x^{A_{cr}}) = \sigma^{B_{y|x^{cr}, x^{B}, ..., x^{A_{cr}}}} = \sigma^{B_{y|x^{cr}, x^{B}, ..., x^{A_{cr}}}}$ {Assumption of Homoscedasticity}

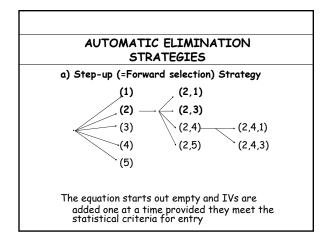

iii) 🐠 distribution

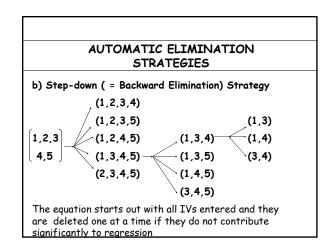


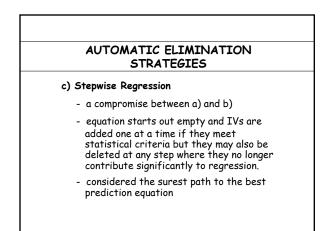


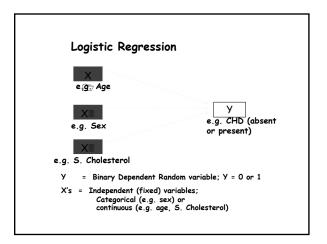


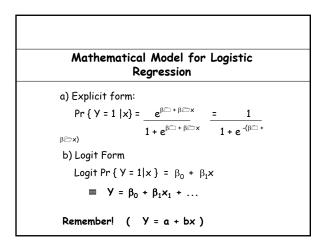
CONFOUNDING AND INTERACTION

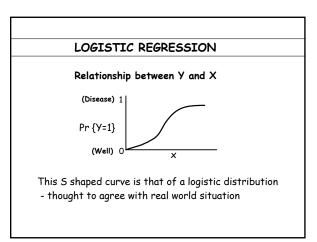

· Confounding and interaction are different phenomena

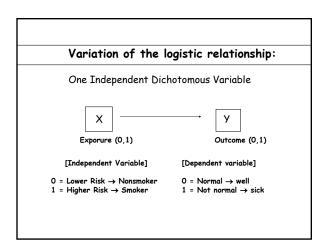

- \cdot A variable may be both a confounder and an interactor, or only one of the two or neither
- · Interaction should be assessed before confounding
- The use of adjusted estimate that controls for confounding is recommended only when there is no meaningful interaction
- If strong interaction is found, an adjustment for confounding is inappropriate. Instead there should be separate results for separate categories of the effect modifier.

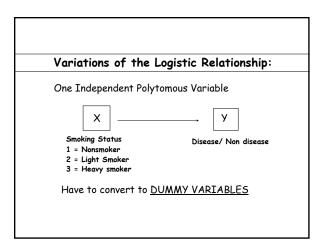

AUTOMATIC ELIMINATION STRATEGIES

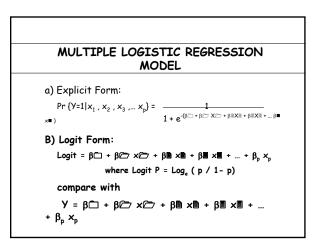

With a large number of inter-related predictor variables, it often becomes quite difficult to sort out the meaning of the individual regression coefficients

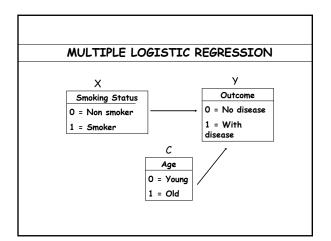

- Need for Automatic Elimination Strategies

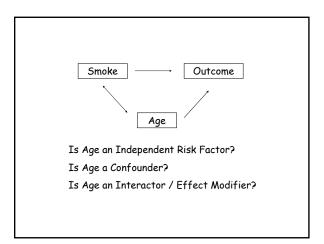












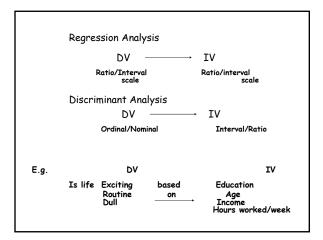
VARIABLES			
Smoking Status	<u>Dummy Variables</u> Smoke (1) Smoke (
1 = Non smoker	0	0	
2 = Light smoker	1	0	
3 = Heavy smoker	0	1	

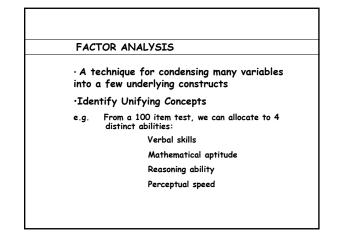
Is Age an Interactor / Effect Modifier?

Use Product-Term i.e. Age Smoke e.g. $Y = \beta + \beta x + \beta x + \beta x = ...$ Reduced model $Y = \beta + \beta x + \beta x = ...$

EUHparder ull Model with Reduced Model

COMPUTER SELECTION OF PREDICTORS

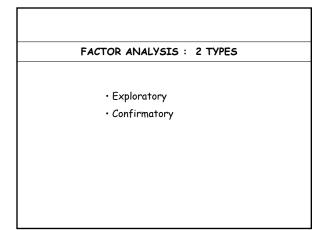

- Backward LR
- Stepwise

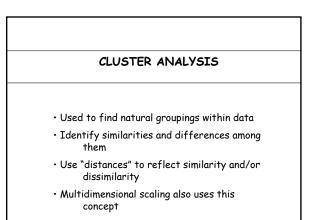

OTHER MULTIVARIATE ANALYSIS

- · Discriminant Function Analysis
- Factor Analysis including Principal Component Technique
- Cluster Analysis

DISCRIMINANT FUNCTION ANALYSIS

- A technique for deciding into which category of a variable a case is most likely to fall i.e. to predict group membership
- Compute " discriminant scores" for each case to predict what group it is in
- Normally, have only two discriminant groups





FACTOR ANALYSIS • In SPSS, by default, uses PRINCIPAL COMPONENT Technique to extract factors • Other extraction methods: Principal-axis factoring Unweighted least squares Maximum likelihood Alpha method Image factoring

STEPS IN FACTOR ANALYSIS

- 1. Compute correlation matrix
- 2. Factor extraction
- 3. Rotation
- 4. Compute scores for each factor

LOGLINEAR REGRESSION

- Extension of CrossTabulation and Chi Square Statistic for Independence
- Difficulty in crosstabulating for > 2 variables
- Use a LOGLINEAR Model

OTHER SPSS STATISTICS FUNCTIONS

- General Linear Model
- Reliability Analysis
- Multidimensional Scaling
- Probit Analysis
- Survival Analysis
- •ETC

GENERAL LINEAR MODEL

- GLM Factorial Analysis
- GLM Univariate Analysis combination of Regression and ANOVA
- GLM Multivariate Analysis
- GLM Repeated Measures
- Variance Components

